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Abstract Precise assessment of an association among
traits of a crop plant is helpful in developing crop-
improvement strategies. Two types of association,
genotypic correlation and phenotypic correlation, may
be used. An estimate of correlation is required along
with a measure of precision in terms of standard error.
Methods for the evaluation of the standard errors of
genotypic and phenotypic correlations are not avail-
able in the literature, and when trials are conducted in
incomplete blocks an algebraic evaluation of such cor-
relation is cumbersome. Three methods — simulation,
jackknife and bootstrap — have been used to evaluate
bias and standard errors of genotypic, phenotypic and
environmental correlations. We have evaluated their
performance with data on grain yield, days-to-heading,
and plant height, in barley genotypes in triple lattices.
Simulation and jackknife techniques were found to be
closer, compared to bootstrap, and can be recommen-
ded for assessing the precision of correlation estimates.
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Introduction

Knowledge of the association among traits of a crop
plant aids the effective development of selection criteria
for desirable plant types; for example, for constructing
indirect selection indices for yield (Hazel 1943).

Genotypic and phenotypic correlations between plant
traits are often used as measures of association. While
estimation of genotypic and phenotypic correlations
(GC and PC) is straightforward, an evaluation of their
precision in terms of standard errors and a test of
significance on them is quite cumbersome. Approxim-
ate expressions for variances of such correlations have
been obtained by Singh (1988), and Singh and Hinkel-
mann (1992), where the genotypes were evaluated in
randomized complete block designs (see also Singh
1992). In the case of data from parent-offspring, Reeve
(1955) and Robertson (1959) use the variance and
covariance components of the two characters within
and between groups of relatives for obtaining a large
sample variance.

Plant breeders evaluate a large number of genotypes
in a single trial, often conducted in incomplete blocks
(such as square lattices, rectangular lattices or a-de-
signs). The a-designs are being increasingly used by the
Germplasm Program at the International Center for
Agricultural Research in the Dry Areas (ICARDA) and
other international agricultural research centres. There
are no methods in the literature for estimating the
standard error or the distribution of the genotypic
correlation from data from incomplete blocks. Consid-
ering the complexity of the expression for genotypic
correlation, it is almost impossible to obtain even an
algebraic approximation for it. Therefore, we have used
three computer-intensive methods to compute the pre-
cision of the estimates of genotypic, phenotypic and
environmental correlations in terms of their biases and
standard errors: (1) a simulation technique, (2) a Jack-
knife method and (3) a bootstrap method (Efron and
Tibshirani 1993). We have used data from two variety
trials on barley (Hordeum vulgare L. subsp. vulgare) to
present the estimates of the correlations between grain
yield, plant height, and days-to-heading, to illustrate
the comparison of the methods.



Materials and methods

Genotypic correlation using data from an incomplete block design

Let o
g
denote the genotypic correlation between traits X and Y in an

inbred population of lines. For example, X and Y may be the height
and grain-yield of barley genotypes respectively. Let v lines be
randomly selected from the population and be evaluated in an
incomplete block design with r replications and b blocks per repli-
cate, in a single environment. The responses X

ijk
and ½

ijk
from the

plot of the i-th genotype in the k-th incomplete block of the j-th
replicate on traits X and Y respectively are modelled as:
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In the above, i"1, 2 . . . v; j"1, 2 . . . r; k"1, 2, . . . b (Singh and
Hinkelmann 1992).

Against the above background, the genotype correlation o
g

is
given by:
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An estimate of o
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is obtained in terms of the estimates of the variance

and covariance components p2
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. The variance compo-
nents p2
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and p2
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can be estimated by using residual (or restricted,

known alternatively) maximum-likelihood (REML) method of Pat-
terson and Thompson (1971) on model (1). For this purpose VCOM-
PONENTS and REML commands of GENSTAT 5 Rel 3 (1993), or
Proc MIXED, or Proc VARCOMP of SAS can be used on plot-wise
data on each of the two variables X and Y. Let the estimates of p2
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covariance p
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The genotypic variability of variable Z, denoted by p2
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Thus, the covariance component p
gxy

can be written in terms of
variance components as
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Phenotypic and environmental correlations

Phenotypic variances and covariances are given by:
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The phenotypic correlation (o
p
) and the environmental correlation
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) between the traits X and Y are expressed as:
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GENSTAT 5 and the SAS procedure will also provide a value of the
estimate of the experimental error variances p2

ex
and p2

ey
(for

example, setting the option SGIMA2 to a scalar will hold the value
of p2

ex
or p2
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in that scalar). The covariance p
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Thus o
e
can be estimated using (10). Since the phenotypic variance

and covariance components are expressible in terms of the estimates
of the genotypic and environmental variance and covariance com-
ponents, an estimate of o

p
can be obtained using (8) and (9). An exact

measure, or even an approximation, of the variance of oL
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in terms of

the joint moments of pL 2
gx

, pL 2
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and pL
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would be cumbersome.
Therefore, computer-intensive methods were sought. Three alterna-
tive ways to compute the precision in terms of the standard error of
oL
g
are given in the following.

Simulated distribution of oL
g

In a simulation study, independent values of oL
g

are generated
from the population with parameters equal to their corresponding
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estimates in model (1). We generated the following vectors of values

of A
x@

y @B for the plot corresponding to the i-th genotype in the k-th
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normal variate values, and can be generated by using fun-
ctions NED( ) and URAND( ) of GENSTAT 5 or the procedure
GRANDOM of its library. Further quantities l
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The variance component estimates can be obtained by setting the
variance component VCOMPONENTS parameter of the VKEEP
directive (GENSTAT 5) and retrieving them in scalar structures
identifying pL 2bx and pL 2by respectively.

Since the estimates of correlation’s o
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the computer program for the simulation simpler. The distribution
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shape of the distribution of oL
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in terms of skewness and k̂urtosis, as

well as the probability points giving critical points for tests of
significance on o

g
. However, in order to compute probability points,

N should be large, probably exceeding 1000. The simulation of
probability points may require considerable computing time if the
size of the experiment is even moderately large. In the above process,
we obtained negative estimates of variance components. We re-
placed them by zero. The covariance-component estimates may lead
to estimates of correlation going beyond (!1, 1). In that case,
correlation was set within the boundary values (!1 or#1). Corres-
ponding to each simulation run, the values of oL

p
and oL

e
were also

generated following the steps given in equations (8)—(11).

Jackknife estimates (Efron and Tibshirani 1993)

In (7) we obtained an estimate oL
g
of o
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using data from all plots [(x
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), i"1, 2, . . . v; j"1, 2, . . . r; k"1, 2 . . . b)]. The jackknife
method considers the estimation of the parameter of interest using
the set of plots by leaving out one observation at a time and
generating a series of estimates (called jackknife replications). If the
plots are indexed, using observations (x

ijk
, y
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) of all plots except the

l-th plot (say), and denote the estimate of o
g

by oL
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. Taking l"1,
2, . . . n in turn, we get n jackknife estimates. The jackknife estimates
of bias and standard error of oL
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Bootstrap method (Efron and Tibshirani 1993)

The bootstrap method is based on generating a large number B of
independent samples (called bootstrap samples) from the set of all
n plot values of traits X and Y. Each bootstrap sample is obtained by
sampling with replacement n times from the whole set of n plots.
Using the data of each such sample and (7), we calculate the value of
the estimate, say oL b

g
from the b-th bootstrap sample b"1, 2, . . . B.

The quantity oL b
g

is also called a bootstrap replication of oL
g
. Thus

each bootstrap sample will give a bootstrap replication of oL
g
. The

bias of the bootstrap estimate is:
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)/B. A typical range for bootstrap replications

(which is the same as number of bootstrap samples B) is 50 to 200.
We took B"200.

Bootstrap bias and the standard error of o
p
and o

e
can be obtained

following the lines of computation used for o
g
.

Experimental material

The barley (H. vulgare L. subsp. vulgare) project at ICARDA has
been conducting several trials in incomplete block designs. We
report the results for two trials conducted in triple lattices with 64
genotypes at Terbol and Kfardan in Lebanon in the 1993/4 growing
season. The plot size was 12 m2 and the harvested area 7.5 m2. We
present the correlation of grain yield (kg/ha) with plant height (cm)
and days-to-heading.

Results and discussion

Table 1 presents the estimates of mean and variance
components (p2

g
, p2

p
, p2

e
) for the three traits in the two

trials. In both trials incomplete blocks were very effec-
tive in controlling the error variability in grain yield
and plant height. However, as would be expected, in-
complete blocks were less effective in the case of days-
to-heading. The genotypic variability in the population
of lines was significant (P(0.01) at both locations. The
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Table 1 Mean, variance and
covariance components for traits
at Terbol and Kfardan

Location Trait Mean Variance-covariance components

G½ PH DH
p2b

p2
g

and p
gxy

Terbol GY 3415 30 334 78 363 457.9 705.4
PH 45.58 3.51 22.18 !nw
DH 135.8 0.18 16.38

p2
e

and p
exy

GY 212944 773.2 !226.2
PH 21.15 !nw
DH !2.61

p2
g

and p
gxy

Kfardan GY 1969 98 206 53 257 !16.06 96.56
PH 47.84 17.04 8.42 !nw
DH 131.0 0.467 40.584

p2
e

and p
exy

GY 81511 324.5 !63.93
PH 23.38 !nw
DH 2.201

! GY"grain yield, kg/ha. PH"plant height, cm. DH"days to heading. !nw: not worked out

Table 2 Estimates of correlation of plant height (PH) and day-to-heading (DH) with grain yield, bias and standard errors estimated from
simulation (Sim), jacknife (Jack) and bootstrap (Boot) methods

Location Correlation with GY Bias Standard errors

Trait Estimate Sim Jack Boot Sim Jack Boot

Terbol PH oL
g

0.347 !0.005 0.000 0.000 0.197 0.192 0.105
oL
p

0.346 0.003 0.000 0.005 0.077 0.064 0.064
oL
e

0.364 0.005 0.000 !0.001 0.077 0.107 0.121
DH oL

g
0.623 0.001 0.000 !0.251 0.145 0.175 0.101

oL
p

0.204 !0.008 0.000 0.014 0.085 0.079 0.066
oL
e

0.304 0.003 0.000 !0.069 0.097 0.128 0.140

Kfardan PH oL
g

!0.091 0.011 !0.191 !0.167 0.237 0.339 0.150
oL
p

0.136 0.005 0.000 0.005 0.080 0.083 0.080
oL
e

0.248 !0.005 0.000 0.001 0.083 0.146 0.141
DH oL

g
0.066 0.003 0.000 !0.044 0.170 0.140 0.080

oL
p

0.014 0.002 0.019 !0.007 0.100 0.077 0.068
oL
e

!0.151 0.002 !0.191 0.020 0.096 0.175 0.150

mean yield at Terbol (534 mm rainfall) was higher than
that at Kfardan (475 mm rainfall). Kfardan also experi-
enced terminal heat stress.

The estimate of genotypic, phenotypic and environ-
mental correlations, together with their biases and
standard errors obtained by simulation, jackknife and
bootstrap methods are given in Table 2. There were
contrasting values of the genotypic correlations be-
tween grain yield and plant height over the two loca-
tions. At Terbol it was significant (P(0.05) when
assessed against the estimate of standard error ob-
tained from the bootstrap method, while the standard

errors obtained from the simulation and jackknife
methods were large enough to declare the correlation
statistically insignificant. The genotypic correlation grain
yield and days-to-heading was statistically significant
at Terbol, but not at Kfardan, when assessed against
the standard errors obtained by each of the methods.

The phenotypic correlations of grain yield with plant
height and days-to-heading were significant at Terbol
but not at Kfardan. The contrasting associations in the
above variable may be due to the high genotype]envi-
ronment interaction likely to be contributed by the
climatic differences between the two locations.
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The biases are reasonably small in the simulation
method. Except where the value of correlation was low,
jackknife gave a low bias. The biases of the bootstrap
and simulation methods are comparable except for one
case of genotypic correlation and in 3 of the 12 correla-
tions presented. The bootstrap method resulted in
a large bias (!0.251) in the estimation of genotypic
correlations, except for the correlation between grain
yield and plant height at Terbol. The standard errors
resulting from simulation are closer to the jackknife
method than to the bootstrap. Bootstrap standard er-
rors are lower than those obtained under the jackknife
method, except for two cases of environmental correla-
tions at Terbol. The standard errors for the estimate of
a given correlation show considerable variation in
magnitude over locations.

Although the illustrations and comparisons of
methods are based on only four data sets, we believe
that a wider range of situations are covered by them.
Therefore, the jackknife or simulation approach can
be recommended for the calculation of standard
errors of the estimates of genotypic and phenotypic
correlations.
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